Sentiment Analysis of JMO Application Reviews on the Google Play Store Using BERT

  • Hendi Putra Wijaya Universitas Sriwijaya
  • Adhityah Anugrah Universitas Sriwijaya
  • Mira Afrina Universitas Sriwijaya
  • Ali Ibrahim Universitas Sriwijaya
Keywords: Sentiment Analysis, BERT, Natural Language Processing

Abstract

The development of digital technology has encouraged increased use of online-based public service applications, including the JMO (Jamsostek Mobile) application developed by BPJS Ketenagakerjaan to provide easy access for its participants. This application has received many user reviews on the Google Play Store, reflecting the level of satisfaction and public perception of service quality. However, the large and unstructured volume of comments makes manual analysis difficult. This study aims to conduct sentiment analysis on user comments about the JMO application on the Play Store using the Bidirectional Encoder Representations from Transformers (BERT) model. The research method involves collecting comments through web scraping, text preprocessing (such as data cleaning, normalization, and tokenization), and sentiment labeling (positive, negative, and neutral). Evaluation using precision, recall, and F1-score is employed to describe the results. The study is expected to identify patterns of user sentiment and public perceptions of the JMO application. It is also expected to serve as an evaluation material and input for developers to improve service quality and user experience.

References

BPJS Ketenagakerjaan. (2022). Transformasi digital layanan BPJAMSOSTEK melalui aplikasi JMO. BPJAMSOSTEK.

BPJS Ketenagakerjaan. (2023). Laporan tahunan BPJS Ketenagakerjaan 2023. BPJS Ketenagakerjaan.

Chen, J., & Zhao, J. (2020). Enhancing sentiment analysis performance using pre-trained transformer models. Journal of Information Systems, 34(3), 251–265.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Fadlilah, S., & Rahardjo, D. (2020). Analisis sentimen aplikasi e-government dengan pendekatan deep learning. Jurnal Ilmu Komputer dan Informatika, 6(2), 85–94.

Google Play Console. (2024). User review and sentiment trends analytics. Google Developer Documentation.

Hidayatullah, A. F., & Kusumasari, R. A. (2021). Sentiment analysis of Google Play Store app reviews using bidirectional LSTM and Word2Vec. International Journal of Advanced Computer Science and Applications, 12(7), 221–228.

Koto, F., Lau, J. H., & Baldwin, T. (2020). IndoBERT and IndoBERT-Lite: Indonesian BERT models for sequence tagging and text classification. In Proceedings of PACLIC 34.

Lailiyah, N., & Rachmawati, R. (2021). Analisis sentimen ulasan aplikasi mobile banking menggunakan CNN dan LSTM. Jurnal Teknologi Informasi dan Komunikasi, 9(2), 114–121.

Liu, B. (2015). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University Press.

Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113.

Oktaviani, M., & Wahyudi, A. (2022). Implementasi BERT untuk analisis sentimen ulasan aplikasi pemerintah di Play Store. Jurnal Sistem Informasi, 18(3), 295–306.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135.

Putri, D. R., Sari, M., & Hidayat, R. (2021). Analisis sentimen ulasan produk e-commerce menggunakan IndoBERT. Jurnal Informatika dan Komputer, 7(2), 145–154.

Rahmawati, N., & Pratama, A. (2022). Penerapan BERT untuk analisis sentimen komentar media sosial berbahasa Indonesia. Jurnal Teknologi Informasi, 9(1), 22–30.

Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune BERT for text classification? In Chinese Computational Linguistics (pp. 194–206).

Suryani, D., & Nugroho, D. (2023). Implementasi IndoBERT untuk klasifikasi sentimen berbahasa Indonesia pada komentar media sosial. Jurnal Teknologi Informasi, 12(1), 45–53.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS 2017).

Published
2026-01-08
How to Cite
Hendi Putra Wijaya, Adhityah Anugrah, Mira Afrina, & Ali Ibrahim. (2026). Sentiment Analysis of JMO Application Reviews on the Google Play Store Using BERT. Journal Informatic, Education and Management (JIEM), 8(1), 643-649. https://doi.org/10.61992/jiem.v8i1.250