Drought Monitoring Using Integrated Satellite Imagery, Weather Data, And Geographic Information Systems
Abstract
Drought, intensified by climate change, poses a significant threat, especially to agricultural regions, necessitating effective monitoring and adaptation strategies (Netshimbupfe et al., 2022; Raksapatcharawong, 2019). This paper explores the integration of satellite imagery, weather data, and Geographic Information Systems to improve drought monitoring accuracy and effectiveness. By combining diverse data sources, a comprehensive approach to drought assessment can be created, facilitating timely interventions and mitigation planning (Łągiewska & Bartold, 2025). The study reviews existing methodologies, examines the potential of advanced remote sensing techniques, and emphasizes the role of GIS in spatial analysis and visualization of drought-related information. The focus is on developing a robust framework that can provide detailed insights into drought conditions, supporting sustainable water resource management and agricultural resilience.
References
Al‐Gaadi, K. A., Hassaballa, A. A., Tola, E., Kayad, A., Madugundu, R., Alblewi, B., & Assiri, F. (2016). Prediction of Potato Crop Yield Using Precision Agriculture Techniques. PLoS ONE, 11(9). https://doi.org/10.1371/journal.pone.0162219
Arabameri, A., Lee, S., Tiefenbacher, J. P., & Ngo, P. T. T. (2020). Novel Ensemble of MCDM-Artificial Intelligence Techniques for Groundwater-Potential Mapping in Arid and Semi-Arid Regions (Iran). Remote Sensing, 12(3), 490. https://doi.org/10.3390/rs12030490
Arunkumar, V., Pandiyan, M., & Yuvaraj, M. (2020). A Review on Remote Sensing and GIS Applications in Soil Resource Management [Review of A Review on Remote Sensing and GIS Applications in Soil Resource Management]. International Journal of Current Microbiology and Applied Sciences, 9(5), 1063. Excellent Publishers. https://doi.org/10.20546/ijcmas.2020.905.117
Boitt, M., Khayasi, P., & Wambua, C. (2023). Assessment of Groundwater Potential and Prediction of the Potential Trend up to 2042 Using GIS-Based Model and Remote Sensing Techniques for Kiambu County. International Journal of Geosciences, 14(10), 1036. https://doi.org/10.4236/ijg.2023.1410053
Bwire, D., Saito, H., Sidle, R. C., & Nishiwaki, J. (2024). Water Management and Hydrological Characteristics of Paddy-Rice Fields under Alternate Wetting and Drying Irrigation Practice as Climate Smart Practice: A Review [Review of Water Management and Hydrological Characteristics of Paddy-Rice Fields under Alternate Wetting and Drying Irrigation Practice as Climate Smart Practice: A Review]. Agronomy, 14(7), 1421. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/agronomy14071421
Chalkias, C., Stathopoulos, N., Kalogeropoulos, K., & Karymbalis, E. (2016). Applied Hydrological Modeling with the Use of Geoinformatics: Theory and Practice. In InTech eBooks. https://doi.org/10.5772/62824
Chavan, K., Bodake, P. S., Pande, C. B., Atre, A. A., Gorantiwar, S. D., & Raut, A. D. (2020). Identification of Cropping Pattern in Khadambe bk. using Sentinel 2 Images and Arc GIS Software. International Journal of Current Microbiology and Applied Sciences, 9(9), 1139. https://doi.org/10.20546/ijcmas.2020.909.141
El-Hamied, S. S. A., Saleh, A., & Asem, A. (2012). Survey on Using GIS in Evacuation Planning. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1208.6037
Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Carrasco, G. (2024). Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. Journal of Sensor and Actuator Networks, 13(4), 39. https://doi.org/10.3390/jsan13040039
Hasibuan, H. S., Rafsanjani, A. H., Putra, D. P. E., & Surjono, S. S. (2021). Mapping of groundwater potentiality index parameters using remote sensing and GIS techniques in the southern mountain, Yogyakarta Special Region. IOP Conference Series Earth and Environmental Science, 930(1), 12064. https://doi.org/10.1088/1755-1315/930/1/012064
Hussain, A., & Bano, D. (2019). Temporal monitoring of Ghamu bar glacial lakes using remote sensing and GIS. International Journal of Advanced Geosciences, 7(1), 18. https://doi.org/10.14419/ijag.v7i1.20308
Ibrahim, A., Wayayok, A., Shafri, H. Z. M., & Toridi, N. M. (2024). Remote Sensing Technologies for Unlocking New Groundwater Insights: A Comprehensive Review [Review of Remote Sensing Technologies for Unlocking New Groundwater Insights: A Comprehensive Review]. Journal of Hydrology X, 23, 100175. Elsevier BV. https://doi.org/10.1016/j.hydroa.2024.100175
Jamil, R. M., Hisham, S. S., Leong, M. C., Nawawi, S. A., Nor, A. N. M., & Ibrahim, N. (2021). Identification of groundwater potential zones using AHP in district Kuala Krai, Kelantan, Malaysia. IOP Conference Series Earth and Environmental Science, 842(1), 12014. https://doi.org/10.1088/1755-1315/842/1/012014
Jaywant, S. A., & Arif, K. M. (2024). Remote Sensing Techniques for Water Quality Monitoring: A Review [Review of Remote Sensing Techniques for Water Quality Monitoring: A Review]. Sensors, 24(24), 8041. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/s24248041
Karthikeyan, L., Chawla, I., & Mishra, A. K. (2020). A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses [Review of A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses]. Journal of Hydrology, 586, 124905. Elsevier BV. https://doi.org/10.1016/j.jhydrol.2020.124905
Kwiecień, J. (2018). GIS for Analysis of Residential Estate Market: Case Study. Geomatics and Environmental Engineering, 12(3), 65. https://doi.org/10.7494/geom.2018.12.3.65
Łągiewska, M., & Bartold, M. (2025). An Integrated Approach Using Remote Sensing and Multi-Criteria Decision Analysis to Mitigate Agricultural Drought Impact in the Mazowieckie Voivodeship, Poland. Remote Sensing, 17(7), 1158. https://doi.org/10.3390/rs17071158
Lillo‐Saavedra, M., Gavilán, V., García‐Pedrero, Á., Gonzalo‐Martín, C., Hoz, F. de la, Somos‐Valenzuela, M., & Rivera, D. (2021). Ex Post Analysis of Water Supply Demand in an Agricultural Basin by Multi-Source Data Integration. Remote Sensing, 13(11), 2022. https://doi.org/10.3390/rs13112022
Lu, J., Carbone, G. J., & Gao, P. (2019). Mapping the agricultural drought based on the long-term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States, 1981–2013. Applied Geography, 104, 10. https://doi.org/10.1016/j.apgeog.2019.01.005
Mallick, J., Khan, R. A., Ahmed, Mohd., Alqadhi, S., Alsubih, M., Falqi, I. I., & Hasan, M. A. (2019). Modeling Groundwater Potential Zone in a Semi-Arid Region of Aseer Using Fuzzy-AHP and Geoinformation Techniques. Water, 11(12), 2656. https://doi.org/10.3390/w11122656
Meng, X., Zhang, S., Wang, G., Ding, J., Chu, C., Zhang, J., & Wang, H. (2025). Decoding Agricultural Drought Resilience: A Triple-Validated Random Forest Framework Integrating Multi-Source Remote Sensing for High-Resolution Monitoring in the North China Plain. Remote Sensing, 17(8), 1404. https://doi.org/10.3390/rs17081404
Muhammad Yassir, Afkar, Suriani Siregar (2020). Jenis Tumbuhan Paku (Pteridophyta) Di Kawasan Perairan Sungai Lawe Harum Kecamatan Deleng Pokhisen Kabupaten Aceh Tenggara. Fakultas Tarbiyah dan Keguruan UIN Ar raniry. Prosiding Seminar Nasional Biotik, 9 Juli 2020, Volume 8, No 1 Diakses https://jurnal.arraniry.ac.id/index.php/PBiotik/article/view/9595.
Muhammad Yassir, Habibul Akram (2022). Paikem's approach to see student responses on food biotechnology materials at smp negeri 3 bambel, Journal of Business Social and Technology. Volume. 3 No. 1. Penerbit Ridwan Institusi Diakses https://bustechno.polteksci.ac.id/index.php/jbt/article/view/73
Muhammad Yassir, Rahmat Arfan, Indra Akbar, Desy Puspita, Muhammad Ridha, Geta Ambartiasari, Thona Mutuah Myco (2022). Peningkatan Kesadaran Mahasiswa Terhadap Sejarah Bangsa Melalui Program Kerja Bakti Di Makam Pahlawan Desa Sagu Baru Kecamatan Lawe Bulan Kabupaten Aceh Tenggara, Jurnal Komunitas Volume 5, No 1. Diakses https://ojs.stiami.ac.id/index.php/jks/article/view/2279/pdf
Najmaddin, P. M., Whelan, M. J., & Balzter, H. (2017). Application of Satellite-Based Precipitation Estimates to Rainfall-Runoff Modelling in a Data-Scarce Semi-Arid Catchment. Climate, 5(2), 32. https://doi.org/10.3390/cli5020032
Netshimbupfe, M. H., Berner, J. M., Kooy, F. van der, Oladimeji, O., & Gouws, C. (2022). The importance and use of Amaranthus for crop diversification in the SADC region. South African Journal of Botany, 152, 192. https://doi.org/10.1016/j.sajb.2022.11.039
Nur, W. H., Kumoro, Y., & Susilowati, Y. (2018). GIS and Geodatabase Disaster Risk for Spatial Planning. IOP Conference Series Earth and Environmental Science, 118, 12046. https://doi.org/10.1088/1755-1315/118/1/012046
Nurlena Andalia, Muhammad Yassir, Rika Aswarita, Syafruddin Syafruddin, M Ridhwan. (2020). Public Relations in Environmental Management Against Diarrhea Infection Rate. Jurnal the 2nd International Conference on Public Health (ICPH), 24 Desember 2020, University tengku umar, Diakses http://conference.utu.ac.id/index.php/ICPH/2020/paper/view/48
Ojo, O. I., & Ilunga, F. (2018). Geospatial Analysis for Irrigated Land Assessment, Modeling and Mapping. In InTech eBooks. https://doi.org/10.5772/intechopen.73314
Patra, S., & Mishra, M. (2024). Spatio-temporal changes in mangroves of Bhitarkanika National Park along the Eastern Coast of India over a three decades period using remote sensing spectral index NDVI. Geology Ecology and Landscapes, 1. https://doi.org/10.1080/24749508.2024.2429224
Raksapatcharawong, M. (2019). DEVELOPMENT OF DROUGHT RISK ANALYSIS PLATFORM USING MULTIPLE SATELLITE SENSORS. International Journal of Geomate, 17(60). https://doi.org/10.21660/2019.60.4733
Research Project Content. (n.d.).
Singh, A. (2018). Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques. Ecological Indicators, 89, 584. https://doi.org/10.1016/j.ecolind.2018.02.041
Strielko, I., & Pereira, P. (2014). The benefits of GIS to land use planning. EGU General Assembly Conference Abstracts, 15813. http://ui.adsabs.harvard.edu/abs/2014EGUGA..1615813S/abstract
Thomas, D. S. K., Ertuğay, K., & Kemeç, S. (2007). The Role of Geographic Information Systems/Remote Sensing in Disaster Management. In Handbooks of sociology and social research (p. 83). Springer Nature (Netherlands). https://doi.org/10.1007/978-0-387-32353-4_5
Todorović, M., & Steduto, P. (2003). A GIS for irrigation management. Physics and Chemistry of the Earth Parts A/B/C, 28, 163. https://doi.org/10.1016/s1474-7065(03)00023-8
Usali, N., & Ismail, M. H. (2010). Use of Remote Sensing and GIS in Monitoring Water Quality. Journal of Sustainable Development, 3(3). https://doi.org/10.5539/jsd.v3n3p228
Wang, X., & Xie, H. (2018). A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources and Flood Risk Management [Review of A Review on Applications of Remote Sensing and Geographic Information Systems (GIS) in Water Resources and Flood Risk Management]. Water, 10(5), 608. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/w10050608
Ye, Z., Yin, S., Cao, Y., & Wang, Y. (2024). AI-driven optimization of agricultural water management for enhanced sustainability. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-76915-8
Zeyliger, A., & Ermolaeva, O. (2021). Water Stress Regime of Irrigated Crops Based on Remote Sensing and Ground-Based Data. Agronomy, 11(6), 1117. https://doi.org/10.3390/agronomy11061117